Synthesis of 2,4-Substituted 3-Oxo-1-phenylcyclo-pentane-1-carboxylic Acids

A. O. Martirosyan, S. P. Gasparyan, V. E. Oganesyan, G. K. Arutyunyan, V. V. Martirosyan, and M. V. Aleksanyan
Institute of Fine Organic Chemistry, National Academy of Sciences of Armenia, pr. Azatutyan 26, Erevan, 375014 Armenia
Received December 20, 2005

Abstract

A procedure has been developed for the synthesis of 2,4-substituted 3-oxo-1-phenylcyclopentan-1carboxylic acids, and substituent effects on particular steps of the synthesis have been studied.

DOI: 10.1134/S1070428006120050

We previously developed a convenient procedure for the synthesis of 3-oxo-1-phenylcyclopentane-1carboxylic acid via successive alkylation of phenylacetonitrile with tert-butyl chloroacetate and tert-butyl 3 -chloropropanoate under conditions of phase-transfer catalysis, followed by the Dieckmann cyclization [1]. 2,4-Substituted 3-oxo-1-phenylcyclopentane-1-carboxylic acids are important starting compounds for the preparation of analogs of the antitumor antibiotic Sarcomycin [2-4] and antiviral antibiotic Amidinomycin [5]. With a view to improve the procedure for the preparation of such compounds and examine the effect of the R^{1}, R^{2}, and R^{3} substituents on the reaction course, we have developed another version which
differs from that described in [1]. In the second step, instead of alkylation with tert-butyl 3-chloropropanoate, we performed cyanoethylation with acrylonitrile and methacrylonitrile under conditions of phasetransfer catalysis (Scheme 1).

First, phenylacetonitrile was treated with tert-butyl bromoacetate, 2-bromopropionate, 2-bromo-2-methylpropionate, and 2-bromo-3-methylbutanoate in 40% aqueous sodium hydroxide in the presence of benzyltriethylammonium chloride (BTEAC). The alkylation smoothly occurred to give compounds IIa-IId, regardless of the R^{1} and R^{2} substituent. The cyanoethylation of IIa-IId with acrylonitrile and methacrylonitrile was performed under analogous conditions. In this case, the

Scheme 1.

I

II, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}(\mathbf{a}), \mathrm{Me}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=i-\operatorname{Pr}(\mathbf{d}) ; \mathbf{I I I}, \mathbf{I V}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}(\mathbf{b})$; $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}(\mathbf{c}) ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=i-\operatorname{Pr}(\mathbf{d}) ; \mathrm{V}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}(\mathbf{b}) ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Me}(\mathbf{c})$.
substituent effect was obvious, and no reaction occurred with compound IIc ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$) even at elevated temperature. The hydrolysis of IIIa-IIId with hydrochloric acid was also smooth, but the subsequent pyrolysis of the corresponding tricarboxylic acids IVaIVd strongly depended on the R^{2} substituent: it did not occur with compound IVd $\left(\mathrm{R}^{1}=\mathrm{R}^{3}=H, \mathrm{R}^{2}=\right.$ $\mathrm{Me}_{2} \mathrm{CH}$). Our attempt to effect Dieckmann cyclization of compound IIId having the same substituents ($\mathrm{R}^{1}=$ $\left.\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=i-\mathrm{Pr}\right)$ was also unsuccessful.

Thus we succeeded in synthesizing three new Sarcomycin analogs: 4-methyl-, 2-methyl-, and 2,4-di-methyl-3-oxo-1-phenylcyclopentane-1-carboxylic acids Va-Vc. Analysis of their ${ }^{1} \mathrm{H}$ NMR spectra showed that carboxylic acids $\mathbf{V a}$ and $\mathbf{V b}$ are mixtures of cis and trans stereoisomers at a ratio of $\sim 1: 1$. Protons in the methyl groups of the trans and cis isomers of Va give rise to two doublets centered at $\delta 1.05$ and $1.13 \mathrm{ppm}(J=7.0 \mathrm{~Hz})$; the corresponding signals of the trans and cis isomers of $\mathbf{V b}$ appear at 0.65 and $1.15 \mathrm{ppm}(J=7.0 \mathrm{~Hz}) .2$,4-Dimethyl-3-oxo-1-phenyl-cyclopentane-1-carboxylic acid (Vc) is a mixture of approximately equal amounts of four possible stereoisomers (δ, ppm: 0.60 d.d and 1.15 d.d, $J=7.0 \mathrm{~Hz}$, for trans- and cis-2-CH3; 1.05 d.d and 1.13 d.d, $J=7.0 \mathrm{~Hz}$ for trans- and cis-4- CH_{3}, respectively). The observed difference in the chemical shifts of the methyl protons originates from magnetically anisotropic effect of the aromatic ring [6].

Stereoisomers of compounds $\mathbf{V a - V c}$ are unstable. In acidic or basic medium, an isolated individual stereoisomer is converted into a mixture of all possible isomers through the corresponding enol form.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury-300 instrument at 300 MHz . Thin-layer chromatography was performed on Silufol UV-254 plates using acetone-hexane mixtures $(\mathrm{A}, 1: 1 ; \mathrm{B}, 1: 2 ; \mathrm{C}$, $1: 3 ; \mathrm{D}, 3: 2$).
tert-Butyl 3-cyano-3-phenylpropanoates IIa-IId were synthesized by the procedure described in [1].

Compound IIa ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$). Yield 60%, bp 141$143^{\circ} \mathrm{C}$ (4 mm), mp $57-58^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.45$ (C). ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum, δ, ppm: $1.20 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 2.62 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=7.0 \mathrm{~Hz}), 4.05 \mathrm{t}(1 \mathrm{H}, \mathrm{CH}, J=7.0 \mathrm{~Hz}), 7.20-7.30 \mathrm{~m}$ $\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, $\%$: C 71.17; H 7.60; N 5.89. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$. Calculated, \%: C 71.46; H 7.28; N 5.95.

Compound IIb ($\left.\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}\right)$. Yield 70%, bp $137-138^{\circ} \mathrm{C}(3 \mathrm{~mm}), \mathrm{mp} 44-45^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.48$ (C). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.95 d and $1.24 \mathrm{~d}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3}, J=8.0 \mathrm{~Hz}\right), 1.23 \mathrm{~s}$ and $1.34 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 2.50-$ $2.90 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 3.79 \mathrm{~d}$ and $4.02 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}, J=$ $8.0 \mathrm{~Hz}), 7.10-7.20 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 73.40; H 7.50; N 5.85. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$. Calculated, \%: C 73.47; H 7.75; N 5.71.

Compound IIc ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{3}$). Yield 30%, bp $145-148^{\circ} \mathrm{C}(5 \mathrm{~mm}), R_{\mathrm{f}} 0.50(\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.05 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.44 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 4.25 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 7.20-7.30 \mathrm{~m}$ $\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 74.20; H 7.95; N 5.20. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$. Calculated, \%: C 74.13; H 8.10; N 5.40.

Compound IId $\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]$. Yield $25 \%, \mathrm{mp} 152-153^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.53$ (C). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.11 \mathrm{~d}\left(6 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.25 \mathrm{~s}(9 \mathrm{H}$, $t-\mathrm{Bu}), 2.10-2.80 \mathrm{~m}(2 \mathrm{H}, \mathrm{CHCHCO}), 4.06 \mathrm{~d}(1 \mathrm{H}$, CHCN, $J=10.0 \mathrm{~Hz}), 7.20-7.35 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 74.30; H 8.30; N 5.00. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$. Calculated, \%: С 74.70; H 8.40; N 5.10.
tert-Butyl 3,5-dicyano-3-phenylpentanoates IIIaIIId (general procedure). Acrylonitrile or methacrylonitrile, 0.3 mol , was added at $35^{\circ} \mathrm{C}$ to a mixture of 0.3 mol of compound IIa-IId, 100 ml of 40% aqueous sodium hydroxide, 150 ml of benzene, and 1.15 g (5 mmol) of benzyltriethylammonium chloride. The mixture was heated for 4 h at $50^{\circ} \mathrm{C}$, the organic phase was separated, washed with water, dried over anhydrous sodium sulfate, and evaporated, and the residue was recrystallized from hexane or carbon tetrachloride.

Compound IIIa ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{3}$). Yield $58 \%, \mathrm{mp} 67-68^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.40(\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.28 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.45 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right)$, $2.20-2.80 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 2.95 \mathrm{~s}\left(2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 7.25-$ $7.45 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 72.50; H 7.10 ; N 9.70. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: C 72.48; H 7.38; N 9.39.

Compound IIIb ($\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$). Yield $95 \%, \operatorname{mp} 93-94^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.42$ (C). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.28 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.45 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right)$, $1.95-2.50 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}_{2}, \mathrm{C}^{5} \mathrm{H}_{2}\right), 2.94 \mathrm{q}\left(1 \mathrm{H}, \mathrm{C}^{2} \mathrm{H}, J=\right.$ $7.0 \mathrm{~Hz}), 7.25-7.45 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 72.15; H 7.50; N 9.63. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: C 72.48; H 7.38; N 9.39.

Compound IIIc ($\left.\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}\right)$. Yield $36 \%, \mathrm{mp} 137-138^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.30$ (C). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.15 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.25 \mathrm{~s}(9 \mathrm{H}$, t-Bu), $1.52 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.90-2.60 \mathrm{~m}(3 \mathrm{H}$,
$\left.\mathrm{CH}_{2} \mathrm{CH}\right), 2.9 \mathrm{q}\left(1 \mathrm{H}, \mathrm{C}^{2} \mathrm{H}, J=7.0 \mathrm{~Hz}\right), 7.05-7.20 \mathrm{~m}$ $\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 69.00; H 7.28; N 8.80 . $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: C 68.67; H 7.20; N 8.40.

Compound IIId ($\left.\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]$. Yield 95%, mp $115-117^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.49$ (B). ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.18 \mathrm{~s}(9 \mathrm{H}, t-\mathrm{Bu}), 1.05 \mathrm{~d}$ and $1.21 \mathrm{~d}(6 \mathrm{H}$, $\left.\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.60-2.90 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}\right)$, $7.35-7.55 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. Found, \%: C 73.80; H 8.10; N 8.30. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$. Calculated, \%: C 73.60; H 7.97; N8.58.

1,4-Substituted 2-phenylbutane-1,2,4-tricarboxylic acids IVa-IVd (general procedure). A mixture of 0.1 mol of compound IIIa-IIId and 150 ml of concentrated hydrochloric acid was heated for 8 h at the boiling point. The mixture was cooled and extracted with diethyl ether, the extract was washed with water and dried over anhydrous sodium sulfate, the solvent was distilled off, and the residue was recrystallized from water.

Compound IVa ($\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{3}$). Yield $84 \%, \mathrm{mp} 175-176^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.49$ (D). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.82 d and $1.05 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.60-$ $2.90 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.16 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35-7.50 \mathrm{~m}$ $\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.65 \mathrm{~s}(3 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 59.80; H 5.70. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}$. Calculated, \%: C 60.00; H 5.71.

Compound IVb ($\left.\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}\right)$. Yield $90 \%, \mathrm{mp} 161-162^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.5$ (A). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.92 d and $1.13 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.85-$ $2.40 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.97 \mathrm{q}(1 \mathrm{H}, \mathrm{CH}, J=7.0 \mathrm{~Hz})$, $7.25-7.40 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.98 \mathrm{~s}(3 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 60.25; H 5.74. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{6}$. Calculated, \%: C 60.00; H5.71.

Compound IVc $\left(\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{H}\right)$. Yield $60 \%, \mathrm{mp} 185-186^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.52$ (D). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.89 d and $1.17 \mathrm{~d}\left(6 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 1.75-$ $2.85 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right), 3.22 \mathrm{q}(1 \mathrm{H}, \mathrm{CH}, J=7.0 \mathrm{~Hz})$, $7.25-7.40 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.15 \mathrm{~s}(3 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 61.30; H 6.00. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$. Calculated, \%: C 61.20; H 6.10 .

Compound IVd $\left(\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]$. Yield $95 \%, m p 110-111^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.50$ (D). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 1.05 d and $1.19 \mathrm{~d}\left(6 \mathrm{H}, \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right)$, $1.60-3.50 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHCH}\right), 7.30-7.50 \mathrm{~m}$ $\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 12.45 \mathrm{~s}(3 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 62.00; H 7.00. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$. Calculated, \%: C 62.30; H 6.60.

2,4-Substituted 3-oxo-1-phenylcyclopentane-1carboxylic acids Va-Vc (general procedure). Com-
pound IVa-IVc, 0.1 mol , was heated for 30 min at $250-270^{\circ} \mathrm{C}$ under nitrogen. The resulting material was cooled and dissolved in 50 ml of 8% aqueous sodium hydrogen carbonate. The solution was washed with several portions of diethyl ether, the aqueous phase was acidified with 10% hydrochloric acid to $\mathrm{pH} 2-3$, the oily material was extracted into diethyl ether, and the extract was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off, and the residue was recrystallized from carbon tetrachloride.

Compound Va ($\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{3}$). Yield 68%, mp $102-103{ }^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.59$ (A). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 1.05 d.d and 1.13 d.d $\left(3 \mathrm{H}, 4-\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right)$, $1.85-3.60 \mathrm{~m}(5 \mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}), 7.20-7.45 \mathrm{~m}(5 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 10.05 \mathrm{~s}(1 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 72.00; H 6.40. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$. Calculated, \%: C 71.50; H 6.40.

Compound $\mathbf{V b}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{H}\right)$. Yield 80%, mp $147-148^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.68$ (A). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.65 d and $1.15 \mathrm{~d}\left(3 \mathrm{H}, 2-\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 2.20-$ $2.80 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.14 \mathrm{q}(1 \mathrm{H}, 2-\mathrm{H}, J=7.0 \mathrm{~Hz})$, $7.25-7.50 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10.15 \mathrm{~s}(1 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 71.90; H 6.60. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$. Calculated, \%: C 71.50; H 6.40 .

Compound Vc $\left(\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{CH}_{3}\right)$. Yield 68%, mp $172-173^{\circ} \mathrm{C}, R_{\mathrm{f}} 0.42$ (B). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 0.60 d and $1.15 \mathrm{~d}\left(3 \mathrm{H}, 2-\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right)$, 1.05 d.d and 1.13 d.d $\left(3 \mathrm{H}, 4-\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 2.05-$ $3.00 \mathrm{~m}(3 \mathrm{H}, 5-\mathrm{H}, 4-\mathrm{H}), 3.24 \mathrm{q}(1 \mathrm{H}, 2-\mathrm{H}, J=7.0 \mathrm{~Hz})$, $7.35-7.50 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10.17 \mathrm{~s}(1 \mathrm{H}, \mathrm{COOH})$. Found, \%: C 72.10; H 6.60. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$. Calculated, \%: C 72.40; H 6.90 .

REFERENCES

1. Mndzhoyan, Sh.L., Martirosyan, A.O., and Ovakimyan, A.R., Zh. Org. Khim., 1982, vol. 18, p. 1885.
2. Shemyakin, M.M., Ravdel', G.A., Chaman, I.S., Shvetsov, I.B., Vdovina, R.G., and Vinogradova, I.L., Izv. Akad. Nauk SSSR, Ser. Khim., 1959, p. 2177.
3. Anirban, K. and Narshinha, A., Synthesis, 2005, p. 1234.
4. Martirosyan, A.O., Gasparyan, S.P., Oganesyan, V.E., Martirosyan, V.V., Chachoyan, A.A., Kazaryan, E.V., and Garibdzhanyan, B.T., Khim.-Farm. Zh., 2005, vol. 39, p. 13.
5. Sung, S-Y., Kist, M., and Frahm, A.W., Arch. Pharm. Pharm. Med. Chem., 1997, vol. 330, p. 21.
6. Fabre, J.M., Calas, B., and Giral, L., Bull. Soc. Chim. Fr., 1972, p. 4285.
